
MATH 245 F18, Exam 2 Solutions

1. Carefully define the following terms: Proof by Contradiction theorem, Proof by Cases
theorem, Proof by Induction, Proof by Reindexed Induction.

Let p, q be propositions. The Proof by Contradiction theorem tells us that if p∧¬q ≡ F ,
then p→ q is true. Let p, q be propositions. The Proof by Cases theorem tells us that if
there are propositions c1, c2, . . . , ck with c1∨ c2∨ · · ·∨ ck ≡ T , and each of (p∧ c1)→ q,
(p ∧ c2) → q, . . . , (p ∧ ck) → q, then p → q is true. To prove ∀x ∈ N P (x) by
induction, we must (a) Prove P (1); and (b) Prove ∀x ∈ N, P (x)→ P (x+ 1). To prove
∀x ∈ N P (x) by reindexed induction, we must (a) Prove P (1); and (b) Prove ∀x ∈ N
with x ≥ 2, P (x− 1)→ P (x).

2. Carefully define the following terms: well-ordered, recurrence, big Omega, big Theta.

Let S be a set of numbers, with an ordering <. We say that S is well-ordered by <
if every nonempty subset of S has a minimum element according to <. A sequence is
a recurrence if all but finitely many of its terms are defined in terms of its previous
terms. Given two sequences an and bn, we say that an is big Omega of bn to mean
∃n0 ∈ N, ∃M ∈ R, ∀n ≥ n0, M |an| ≥ |bn|. Given two sequences an and bn, we say
that an is big Theta of bn to mean that an is big O of bn and also an is big Omega of
bn.

3. Suppose that an algorithm has runtime specified by the recurrence relation Tn =
2nTn/2 + 3. Determine what, if anything, the Master Theorem tells us.

Because 2n is not a constant, the Master theorem does not apply.

4. Use induction to prove that, for all n ∈ N, (2n)!
n!n!
≥ 2n.

Base case: n = 1. (2·1)!
1!1!

= 2, while 21 = 2. Verified.

Inductive case: Let n ∈ N, and assume that (2n)!
n!n!
≥ 2n. Multiply by (2n+2)(2n+1)

(n+1)(n+1)
. We get

(2(n+1))!
(n+1)!(n+1)!

= (2n+2)(2n+1)
(n+1)(n+1)

(2n)!
n!n!
≥ (2n+2)(2n+1)

(n+1)(n+1)
2n = 2(2n+1)

n+1
2n = 2n+1

n+1
2n+1 = (n+1)+n

n+1
2n+1 =

(1 + n
n+1

)2n+1 ≥ 2n+1. Thus (2(n+1))!
(n+1)!(n+1)!

≥ 2n+1.

5. Let an = n1.9 + n2. Prove that an = O(n2).

Take n0 = 1 and M = 2. For all n ≥ n0, we have n0.1 ≥ 1 = n0, so n2 ≥ n1.9. Hence
an ≤ n2 + n2, and thus |an| = an ≤ 2n2 = 2|n2|.

6. Let x ∈ R. Prove that there is at most one n ∈ Z with n − 1
2
≤ x < n + 1

2
. Do not

use any theorems about floors or ceilings.

Suppose that there are m,n ∈ Z with n − 1
2
≤ x < n + 1

2
and m − 1

2
≤ x < m + 1

2
.

Hence n − 1
2
≤ x < m + 1

2
. Adding 1

2
to both sides, we get n < m + 1. But also

m − 1
2
≤ x < n + 1

2
. Subtracting 1

2
from both sides, we get m − 1 < n. Hence

m− 1 < n < m + 1. By Thm 1.12 in the book, since m,n ∈ Z, in fact m = n.



7. Let x ∈ R. Prove that there is at least one n ∈ Z with n − 1
2
≤ x < n + 1

2
. Do not

use any theorems about floors or ceilings.

We use maximum element induction. Define S = {m ∈ Z : m − 1
2
≤ x}, a nonempty

set of integers with x+ 1
2

as an upper bound. Hence S has some maximum element n.
n − 1

2
≤ x because n ∈ S. We have two cases: if x < n + 1

2
, we are done. If instead

x ≥ n + 1
2
, then n + 1 is an integer, and satisfies (n + 1) − 1

2
≤ x, so n + 1 ∈ S. But

then n was the maximum element of S, a contradiction. Hence n− 1
2
≤ x < n + 1

2
.

8. Solve the recurrence, with initial conditions a0 = 3, a1 = 4, and relation an = 4an−1−
4an−2 (n ≥ 2).

This has characteristic polynomial r2 = 4r−4, which factors as (r−2)2 = 0. Hence we
have a double root, and the general solution is an = A2n +Bn2n. Applying our initial
conditions gives 3 = a0 = A20 +B · 0 · 20 = A, and 4 = a1 = A21 +B · 1 · 21 = 2A+ 2B.
The system of equations {3 = A, 4 = 2A + 2B} has solution {A = 3, B = −1}, so the
specific solution is an = 3 · 2n − n · 2n = (3− n)2n.

9. The Tribonacci numbers are given by initial conditions T0 = 0, T1 = 1, T2 = 1, and
recurrence relation Tk = Tk−1 + Tk−2 + Tk−3 (k ≥ 3). Prove that, for all k ∈ N,
Tk < 2k.

We handle the three base cases k = 0, 1, 2 separately: T0 = 0 < 1 = 20, T1 = 1 < 2 =
21, T2 = 1 < 4 = 22. We now use strong induction. Let k ∈ N with k ≥ 3. Assume that
Tk−1 < 2k−1, Tk−2 < 2k−2, Tk−3 < 2k−3. Now, since k ≥ 3, Tk = Tk−1 + Tk−2 + Tk−3 <
2k−1 + 2k−2 + 2k−3 < 2k−1 + 2k−2 + 2k−3 + 2k−3︸︷︷︸ = 2k−1 + 2k−2 + 2k−2 = 2k−1 + 2k−1 = 2k.

Hence Tk < 2k.

10. Prove that
√

3 is irrational.

We argue by contradiction. Suppose that
√

3 is rational. Hence we may assume there
are m,n ∈ Z, with n 6= 0, and

√
3 = m

n
. By cancelling any common factors, we may

also assume that m,n have no common factors. Squaring, we get 3 = m2

n2 and hence
3n2 = m2. Now, 3|m2, and 3 is prime, so 3|m (or 3|m). Write m = 3k, for some
integer k, and substitute back. We get 3n2 = (3k)2 = 9k2. Hence n2 = 3k2. Again,
3|n2, and 3 is prime, so 3|n (or 3|n). Hence m,n both have the common factor 3, a
contradiction.


